Notions de dimensionnement du béton armé : caractéristiques du béton

Avril 2021

Les propriétés et les caractéristiques du béton pour le dimensionnement des ouvrages en béton sont définies dans la section 3 « Matériaux » (article 3.1) de la norme NF EN 1992-1-1, complétée par son Annexe Nationale.

Les propriétés des matériaux ou des produits sont représentées par des valeurs caractéristiques (valeur de la propriété ayant une probabilité donnée de ne pas être atteinte lors d'une hypothétique série d'essais illimitée

L'Eurocode NF EN 1990 préconise de définir la valeur caractéristique d'une propriété de matériau par le fractile 5 % lorsqu'une valeur « basse » est défavorable (cas général), et par le fractile 95 % lorsqu'une valeur « haute » est défavorable.

Par exemple pour le béton, on distingue pour la résistance en traction, 2 grandeurs : fctk0,05 et fctk0,95

Résistance du béton

La résistance à la compression du béton est désignée conformément à la norme NF EN 206/CN par des classes de résistance (C) liées à la résistance caractéristique (fractile 5 %) mesurée sur cylindre f_{Ck, Cyl} ou sur cube f_{ck}, cube, à 28 jours.

Pour le dimensionnement des ouvrages, le béton est défini par sa résistance caractéristique à la compression sur cylindre à 28 jours notée fck (fractile 5 %).

Les résistances caractéristiques f_{ck} (mesurée sur cylindre) et les caractéristiques mécaniques correspondantes, nécessaires pour le calcul, sont données dans le tableau ci-dessous (Extrait du tableau 3.1 de la norme NF EN 1992-1-1).

CARACTÉRISTIQUES DE RÉSISTANCE DES BÉTONS

- f_{Ck} : résistance caractéristique à la compression du béton sur cylindre
- f_{CK} cube : résistance caractéristique à la compression du béton sur cube
- f_{ctm} : valeur moyenne de la résistance à la traction
- f_{Ctk} 0,05 : valeur inférieure de la résistance caractéristique à la traction (fractile 5 %) f_{Ctk} 0,95 : valeur inférieure de la résistance caractéristique à la traction (fractile 95 %)
- Ecm : module d'élasticité sécant du béton

Résistance du béton en fonction du temps

La résistance en compression du béton en fonction du temps est prise égale à :

- $f_{CK}(t) = fcm(t) 8 (MPa) pour 3 t 28 jours$
- f_{Ck}(t) = fck pour t 28 jours

NOTA : l'article 3.1.2 donne une formule permettant de déterminer plus précisément la résistance en compression et en traction du béton en fonction du temps selon le type de ciment.

Déformation élastique et fluage

Les articles 3.1.3 et 3.1.4 de la norme NF EN 1992-1-1 précisent les données nécessaires à la détermination respectivement du module d'élasticité et du coefficient du fluage.

Diagramme contrainte-déformation

Pour le calcul des sections deux types de diagramme sont proposés :

Résistances de calcul

Les résistances de calcul du béton sont définies dans l'article 3.1.6 de la norme NF EN 192-1-1 :

- En compression $f_{cd} = \alpha_{cc} f_{ck} / \gamma_{c}$
- En traction $f_{Cd} = \alpha_{Ct} f_{Ctk0,05} / \gamma_{C}$

Avec f_{ck} résistance caractéristiques sur cylindre à 28 jours :

- $f_{\text{Ctk0,05}} \text{ fractile 5 \% de la résistance en traction défini à partir de la résistance moyenne en traction } f_{\text{ctm}}$
- y_C coefficient de sécurité = 1,5 pour les situations durables et transitoires
- α_{CC} et α_{Ct} coefficients = 1

Article imprimé le 16/12/2025 © infociments.f