Octobre 2022

Les propriétés des bétons à l'état frais et à l'état durci sont prescrites sous forme de différents types de classes dans la norme NF EN 206+A2/CN : 2022.

Classes de consistance du béton frais

La norme NF EN 206+A2/CN : 2022 définit pour les bétons à teneur en eau courante 5 classes de consistance

La mesure de l'affaissement est réalisée selon la norme NF EN 12350-2.

Classes de consistance des bétons					
Classe	S1	S2	S3	S4	S5
Affaissement (en mm)	10 à 40	50 à 90	100 à 150	160 à 210	≥210

Nota bene - la consistance peut aussi être spécifiée par :

- L'indice de serrage : 5 classes de serrage
 Le diamètre d'étalement (en mm) : 6 classes d'étalement

Classes de propriétés supplémentaires à l'état frais pour les BAP

Les spécifications des bétons autoplaçants doivent être adaptés à une application donnée à partir de quatre paramètres :

- Etalement au cône d'Abrams SF
 Viscosité VS ou VF
 Aptitude à l'écoulement PL ou PJ
 Résistance à la ségrégation SR

La mesure de l'étalement est réalisée selon la norme NF EN 12350-8.

Classes d'étalement au cône d'Abrams			
Classe	SF1	SF2	SF3
Etalement (en mm)	550 à 660	660 à 750	750 à 850

La mesure de viscosité apparente est réalisée selon la norme NF EN 12350-8 (t500) ou la norme NF EN 12350-9 (tv). Ces classes ne présentent pas une corrélation exacte.

Classes de viscosité apparente			
Classe	VS1	VS2	
t 500 (en s)	< 2.0	≥ 2.0	
Classe	VF1	VF1	
t _v (en s)	< 9.0	9.0 à 25.0	

La mesure d'aptitude à l'écoulement est réalisée selon la norme NF EN 12350-10 (Boîte en L) ou la norme NF EN 12350-12 (Etalement à l'anneau). Ces classes ne présentent pas une corrélation exacte.

Classes d'aptitude à l'écoulement		
Classe	Taux de remplissage de la boite en L	
PL1	≥ 0.80 avec 2 armatures	
PL2	≥ 0.80 avec 3 armatures	
Classe	Etalement à l'anneau	
PJ1	≤ 10 avec 12 armatures	
PJ2	≤ 10 avec 16 armatures	

La mesure de la résistance à la ségrégation est réalisée selon la norme NF EN 12350-11.

Classes de résistance à la ségrégation - Stabilité au tamis			
Classe	SRI	SR2	
Laitance (en %)	< 20 %	< 15 %	

Classes de résistance à la compression des bétons durcis

La résistance des bétons durcis à 28 jours peut être mesurée sur des éprouvettes cylindriques ou cubiques.

Elle est définie par deux valeurs :

- fck-cyl : résistance caractéristique (fractile 5 %) en compression du béton déterminée par essais sur éprouvettes cylindriques à 28 jours en N/mm2. fck-cube : résistance caractéristique (fractile 5 %) en compression du béton déterminée par essais sur
- éprouvettes cubiques à 28 jours en N/mm2

La norme NF EN 206+A2/CN (2022) propose deux familles de classes de résistance en fonction de la masse volumique du béton, qui correspondent à la résistance caractéristique que doit atteindre le béton à 28 jours :

- La classe de résistance à la compression des bétons de masse volumique normale et des bétons lourds est désignée par la lettre C suivie des valeurs fck-cyl et fck-cube.
 La classe de résistance des bétons légers est désignée par les lettres LC suivies des valeurs fck-cyl et fck-cube

Elle définit respectivement seize classes de résistance pour les bétons de masse volumique normale et les bétons lourds de C 8/10 à C 100/115 et quatorze classes pour les bétons légers de LC 8/9 à LC 80/88.

<u>Nota Bene</u>: la classe de résistance C 30/37 correspond donc à une résistance caractéristique de 30 MPa sur cylindre et 37 MPa sur cube.

<u>Nota Bene</u> : c'est la résistance du béton sur cylindre qui est<u>prise</u> en compte pour le dimensionnement du béton dans la norme de dimensionnement NF EN 1992 (EUROCODE)

Classes de résistance à la compression pour les bétons de masse volunique normale et les bétons lourds

Classe	$f_{ m ds-cyl}$	$f_{ m ck-cube}$
Classe	(en N/mm ²)	(en N/mm ²)
C 8/10	8	10
C 12/15	12	15
C 16/20	16	20
C 20/25	20	25
C 25/30	25	30
C 30/37	30	37
C 35/45	35	45
C 40/50	40	50
C 45/55	45	55
C 50/60	50	60
C 55/67	55	67
C 60/75	60	75
C 70/85	70	85
C 80/95	80	95
C 90/105	90	105
C 100/115	100	115

Classe de résistance à la compression pour les bétons légers

Classe	f _{ek-cyl} (en N/mm²)	f _{ck-cube} (en N/mm²)
LC 8/9	8	9
LC 12/13	12	13
LC 16/18	16	18
LC 20/22	20	22
LC 25/28	25	28
LC 30/33	30	33
LC 35/38	35	38
LC 40/44	40	44
LC 45/50	45	50
LC 50/55	50	55
LC 55/60	50	60
LC 60/66	60	66
LC 70/77	70	77
LC 80/88	80	88

Classe de masse volumique

La norme NF EN 206+A2/CN : 2022 couvre les bétons de masse volumique normale (2 000 à 2 600 kg/m3), les bétons lourds (masse volumique supérieure à 2 600 kg/m3) et les bétons légers (masse volumique comprise entre 800 et 2 000 kg/m3).

Type de béton en fonction de sa masse volumique

	Masse volumique (en kg/m3)
Béton léger	de 800 à 2000
Béton de masse volumique normal	de 2000 à 2600
Béton lourd	supérieure à 2600

 $\underline{\text{Nota Bene}}: \text{les bétons légers sont classés selon 6 plages de masse volumique (de D1,0 à D2,0)}.$

Classes de teneurs en chlorures

La norme NF EN 206+A2/CN : 2 définit les teneurs maximales en ions chlorures du béton à respecter en fonction de son type d'utilisation. Elle définit cinq classes de teneur : CI 1,0 / CI 0.65 /CI 0,4 / CI 0,2 / CI 0,1.

Les classes de chlorures permettent d'adapter la composition du béton en fonction des risques de corrosion des armatures.

<u>Nota Bene</u>: La teneur maximale en ions chlorure est définie en pourcentage de la masse du ciment, elle concerne la somme des chlorures de tous les constituants.

Classes de chlorures à respecter en fonction de l'utilisation du béton

Utilisation du béton	Classe de chlorures	Teneur maximale en Cl' rapportée à la masse de ciment
Béton contenant ni armature en acier, ni pièces métalliques noyées (hors éléments de levage résistants à la corrosion)	CI 1,0	1%
Béton contenant des armatures en acier ou des pièces métalliques noyées	Cl 0,40	0,40%
Béton contenant des armatures en acier ou des pièces métalliques noyées, et formulé avec un ciment de type CEM III ou de type CEM VI contenant plus de 35% de laitier	CI 0,65	0,65%
Béton contenant des armatures de précontrainte en acier	CI 0,20	0,20%

Dimension maximale des granulats

La classification du béton est fonction de la dimension maximale des granulats : dimension nominale supérieure des plus gros granulats présents dans le béton (Dmax).

Auteur

Retrouvez toutes nos publications sur les ciments et bétons sur infociments.fr

Consultez les derniers projets publiés
Accédez à toutes nos archives
Abonnez-vous et gérez vos préférences
Soumettez votre projet

Article imprimé le 13/12/2025 © infociments.fr